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Abstract— Human muscles have a remarkable ability to
maintain a constant damping ratio even as the inertia they carry
changes. Inspired by this phenomenon, this study investigates
its robotic reproduction via a nonlinear controller we call
Proportional-and-Hysteretic-Damping or PHD control. While
the effect is easier to explain in the frequency domain, we
provide an implementable approximation in the time-domain.
For comparison, we demonstrate superior robustness to inertia
changes relative to the classic Proportional-Derivative or PD
controllers. This comparison is performed on a simple physical
testbed, and then scaled to a simulation of a line-foot bipedal
robot. In both cases the new controller demonstrates the
human-like robustness to inertia changes.

I. INTRODUCTION

Hysteretic damping is an extensively studied phenomenon
of dissipation of energy for which scientific interest has
peaked in structural and civil engineering sciences. It is
mostly studied in the frequency domain where its properties
have been demonstrated and replicated in passive compo-
nents and systems [1] [2]. While [3] has identified the
hysteretic spring model in the human elbow joints, these
results were recently strengthened by [4] as they allowed for
better human-adapted controller design for exoskeletons. But
it does not seem to be restrained to humans as [5] have shown
that cockroaches’ legs actually fit a hysteretic damping model
over a wide range of frequencies too. One of the key features
of a hysteretic damping model is its unique property of
having a frequency independent damping ratio, which means
that it improves a system’s robustness against overshoot
provoked by unknown inertia variations. On one hand, we are
curious as to the benefits such model provides to the human
body’s dynamics and we aim at sharing its properties with
robots by designing a new PHD control strategy. On another
hand, questions arise regarding its implementation potential
in robotics as its non-linear nature makes it non trivial
to represent in the time-domain in the first place. Linear-
hysteretic-damping models are studied like the Kelvin and
Maxwell elements and Hilbert transformation in the time-
domain[6] [7]. Since Hilbert transformation is non-causal,
other approaches aimed to realize the hysteretic damping
through a causal relaxation [8], an additional all-pass filter in
the frequency domain [9], and a triangular approximation of
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the hysteresis loop [10]. Similar to the triangular hysteresis
loop approximation, the problems addressed by this PHD
implementation have been considered in the field of adaptive
control which already investigates how to react to the very
changes of the system we are trying to control [11] [12]
[13]. But while adaptive control aims at identifying model
uncertainties and compensating for untracked disturbances, a
strength of a hysteretic damping-based controller lies in the
absence of any identification requirements, the position and
velocity configurations of the robot are sufficient knowledge
for the controller.

In this paper we investigate how to transfer to robotics sys-
tems this feature identified in human joints dynamics. First,
we provide a parameterized time-domain approximation of a
complex stiffness, which is based on a nonlinear hysteresis
effect. Then, we demonstrate the applicable concept of
a damping invariant control law with the implementation
of a PHD-based impedance controller on a 1-DoF system
and show results in simulation and hardware. Finally, we
address the scalability to multi-dof systems by maintaining
the bipedal robot DRACO’s standing balance.

II. PROPORTIONAL-AND-HYSTERETIC-DAMPING

For a linear second order oscillatory system like a Mass-
Spring-Damper (MSD), a Laplace-transformed representa-
tion would be

τ

q
=

1
ms2 +bs+ k

, (1)

where b the linear damping coefficient, k the stiffness, m the
mass of the system, q the displacement and τ the external
torque applied to the system. We have natural frequency and
damping ratio expressed as ω0 =

√
k/m and ζ = b/(2

√
km).

The complex stiffness model [4] differs from the MSD
model by introducing a frequency-dependent damping be-
havior b = h/ω . By substituting s = jω , it is simplified to

τ

q
=

1
ms2 + jh+ k

(2)

which results in a mass-invariant damping ratio ζ = h/2k.

A. Mass Invariant Damping Ratio via Mass-Dependent
Damping Matrix

We first consider modeling a system’s interactions with its
environment linearly and adjusting its damping matrix, B, to
provide a constant damping ratio by taking advantage of our
estimate of the contact constrained mass matrix Λ



Λ
−1 = M−1−M−1JT

c (JcM−1JT
c )
−1JcM−1 (3)

Mc = (JeΛ
−1JT

e )
−1 = LLT (4)

W 2 = L−1KL−T (5)

B = 2LζWLT (6)

where Λ is the contact constrained mass matrix, M is the
floating base mass matrix, Jc is the contact Jacobian, Mc is
the contact constrained operational space mass matrix, Je
is the environment’s contact Jacobian, L is the Cholesky
decomposition of Mc, and W , ζ , K and B are the param-
eters under matrix form of a multi-dof mass-spring-damper
system.

However, this model relies heavily on the knowledge of
the environment and has thus weak guarantees of achieving
the expected result outside of a simulation environment.

B. Mass Invariant Damping Ratio via Nonlinear Hysteretic
Damping

If the controller does not know the inertia of the environ-
ment, the contact configuration, or the mass of the robot
accurately, is it still possible to achieve a mass invariant
damping ratio? We have then explored the perspective of
designing a nonlinear controller which approximates the
frequency domain behavior of a complex stiffness—what
we call PHD control. To emulate a complex stiffness, the
control needs to be dominated by spring-like behavior, but
maintain a constant phase lag independent of frequency. This
type of phase lag behavior can be achieved by hysteresis,
but hysteresis as typically implemented is also a highly
amplitude dependent behavior that adds less and less phase
lag as the input gets larger. Our model essentially scales the
amount of hysteresis as a function of the spring deflection
in order to avoid having an amplitude-dependent behavior.
A spring model with two switching stiffness is a good start
as both behaviors are linear and therefore do not introduce
an amplitude dependence by themselves.

First, we can model a hysteretic spring force by adding a
hysteretic damping one shaped as a hyperbola to the force
originating from the real stiffness

fHyperbola = kq+ sign(q̇)
√

λ +(βkq)2; (7)

where λ changes the distance between the two focuses of
the hyperbola. As λ increases, the two possible combined
stiffness move away from the spring origin.

Secondly, the hysteretic spring component of (2) has
actually been approximated in the time domain by Reid [10]
with the non-causal model

fHS = k
(

1+ sign(qq̇)
ηπ

2

)
q (8)

with η the frequency-independent loss factor. This approxi-
mation corresponding to fHyperbola when λ = 0, we trans-
formed (8) into the more adaptable form (9) in order to
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study a broad range of applications of this model for future
implementations.

fHS = kq+
(kβ |q|+n)q̇
|q̇|+d

(9)

where β = (1−ε)/(1+ε) for ε ∈ (−1,1]. Based on the ve-
locity sign we notice a switch between two effective stiffness,
from an impedance controller perspective, this translates into
a ”proactive” and a ”reactive” stiffness shown in Fig. 1.
This design choice is meant to facilitate its integration as
a controller of a realistic actuated system, it will prove
to be particularly useful in our hardware implementation
as it allows for a linear dynamic at low frequency while
|q̇|< d, avoids to cross a singular torque value with n > 0, β

adjusts the deviation between the active and reactive stiffness,
respectively k(1−β ) and k(1+β ), and together d and n
allow for ”smoothing” the two effective stiffness. One can
have a better intuition of these parameters with Fig. 2.
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III. 1-DOF SIMULATION AND EXPERIMENT

A. Simulation

To demonstrate that our time-domain approximation con-
serves the properties of a hysteretic spring, we simulate a
1-DoF actuated system which can be summarized as an
immovable motor providing a perfect torque source τ in
order to move a rod of known inertia J using an impedance
controller. We define ∆q = qdes−q, ∆q̇ = q̇des− q̇, our PHD
controller’s equation is

τPHD = k∆q+
(kβ |∆q|+n)∆q̇
|∆q̇|+d

(10)

The simulation equations are shown below, with τg the torque
applied by gravity, τgcomp the predicted gravity compensation
torque representing the uncertainty on the system’s mass:

q̈ =
1
J
(τg + τgcomp + τPHD) (11)

To demonstrate our PHD controller’s hysteretic damping
robustness to inertia variations, we identify our system’s
frequency-domain model by adding an excitation exponential
chirp τchirp covering the range of frequencies from 0.05 to
5 Hz while keeping qdes = cst. (8) becomes

q̈ =
1
J
(τg + τgcomp + τPHD + τchirp). (12)

We then tune a classic PD impedance controller to reach
a similar gain magnitude plot as our PHD controller by
sharing the same stiffness and by tuning the damping term
accordingly, respectively b and β for PD and PHD. Now
that our systems are ”synced” in the frequency domain
through their bode plots, we vary the inertia (and thus the
natural frequency) by adding a mass to the rod and updating
τgcomp accordingly. As shown in the figures below we use
two masses m1 = 0.66kg and m2 = 4.56kg to compare each
controller’s sensitivity to changing their natural frequency.

The first set of takes out of Fig. 5 are visual. Even
though the natural frequency changes, it is equivalent to
translating the plot horizontally for our PHD controller’s
frequency-invariant damping. Also, the PD plots show that
the rod’s inertia increase in Fig. 5(a) naturally results in an
increasingly damped behavior, and in Fig. 5(b) it results in
an under-damped behavior prone to overshooting.

The second set of takes is the estimation of the damp-
ing ratio we are interested in. We have considered two
approaches for quantifying the damping ratio, the first one
is through fitting a MSD and the complex stiffness model in

Fig. 4. P0 setup

the frequency domain with the data gathered and compute:

ζ = ζMSD +ζMHD =
b

2
√

km
+

h
2k

(13)

The other approach consists in deriving the damping ratio
from the energy dissipated over a loop, corresponding to the
area close by the said loop in the torque to displacement
graphs:

Edissipated = πq2
mh

ζ =
h
2k

(14)

Even though the first approach seems more robust since it
takes all frequencies into account, it is not always adequate
to sweep over a wide range of frequencies. We verified our
time-domain hysteretic damping performance in simulation
and proceed to real hardware experimentation.

B. Hardware

The following hardware experiments have been conducted
on the Series-Elastic Actuator (SEA) P0 from Fig. 4, pro-
vided by the company Apptronik. While in the previous
simulation we have assumed a perfect torque source and
sensor data, using real hardware involves dealing with noise
and inaccuracy in our models, the purpose of Fig. 6 is to
introduce the reader to these constraints, it shows a set of data
recorded during a chirp signal experiment described in III-A.
Fig. 6(b) is a zoom-in on the red rectangle in Fig. 6(a), while
Fig. 6(d),(e) and (f) show the torque readings in joint space
corresponding to the 3 range of frequencies, highlighted in
red in Fig. 6(c).

Fig. 6(b) justifies the choice of a high d term to relieve
the system from its sensitivity to low frequency disturbances
and the implementation of a second order low pass filter with
wc = 120rad/s to avoid high frequency noise which would
both lead to chattering. By giving a close look at the data
in Fig. 6(d) we notice the proactive and reactive stiffness
are very close, this is because we have linearized our model
in low frequencies by increasing d. In Fig. 6(e), we have
reached the system’s nominal frequency and the torque’s and
displacement’s amplitudes are at a maximum, the shape is
non-mistakenly hysteretic so d is now too small to linearize
the system’s dynamics and this is crucial at this frequency as
we want to avoid overshooting. Toward the high frequencies
we notice the bias torque originating from the misestimation
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of the gravity, as the damping is dependent of the equilibrium
it becomes more pronounced and the inertia effects are now
curving the profile of the plot.

IV. MULTI-DOF SIMULATION

We are using DART simulation environment [14] and a
humanoid robot as a testing application. DRACO is liquid-
cooled viscoelastic biped and has ten actuated DOFs includ-
ing three for the hip structure, one for the knee and one for
the ankle [15].

The control structure we are using to demonstrate our
controller’s characteristics on the bipedal robot DRACO is
a modified Whole-Body Locomotion Controller (WBLC)
from [16] which is presented in Fig. 3. It consists of an
inverted kinematics prediction (KinWBC) of the robot’s de-
sired configuration, based on a set of predefined tasks, which
is put in series with an inverted dynamics model (DynWBC)
predicting the torques required to drive the robot from its
current configuration to the desired one while optimizing
for 3 constraints: feet contact forces, feet acceleration and
configuration relaxation.

WBLC is a Quadratic Programming (QP) which can be
expressed as

minimize FT
r WrFr + ẍT

c Wcẍc +δ
T
q̈ Wq̈δq̈ (15)

subject to UFr ≥ 0, (16)
SFr ≤ Fr,z−max, (17)

ẍc = JT
c q̈+ J̇cq̇, (18)

Aq̈+b+g =

(
06×1
τWBC

)
+ JT

c Fr, (19)

q̈ = q̈WBC +δq̈, (20)
q̈WBC = q̈des + kd(q̇des− q̇)+ kp(qdes−q),

(21)
τmin ≤ τWBC ≤ τmax. (22)

One can find a more detailed description of the controller in
[16]. For the specific purpose of considering the scalability
of our PHD controller to multi-DoF systems in simulation,
we design a PHD alternative to both the PD low-level
controller and the PD desired acceleration controller for the
inverted dynamics computation. We share the equations for
the desired joint acceleration PHD controller, the definition
of τWBC and the actuator output τact which adds a vector of
τPHD to τWBC

q̈des = k∆q+
(kβ |∆q|+n)∆̇q
|∆̇q|+d

(23)

Mq̈des +b+g = τWBC + Jc
tFr (24)

τact = τWBC + τPHD (25)

We set the following task: keeping the center of mass of the
robot at a desired altitude between its two feet, and maintain-
ing the initial hip orientation. DRACO’s study case is very
different from P0’s in many ways, we are now balancing a
floating base from a robot with contact constraints which do
not guarantee anymore the forces transmission to the ground
in case of jumping or slipping.
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By using a PHD controller to compute the desired ac-
celeration we are forcing the coupling of the robot’s joints
proportionally to the masses moved, additionally the hips
orientation and center of mass task are set in Cartesian
space which results in more coupled behaviors in joint space.
Only the low-level torques τPHD originating from the PHD
impedance controllers are truly decoupled. In order to test
the robustness to external disturbances, we apply a sinusoidal
force on the torso projected on the Z-axis of the robot’s
center of mass, visible as a blue ball in Fig. 9. Fig. 8 shows

the reaction of the system to the aforementioned disturbance
and we can retrieve the phenomena described in Fig. 8.
Indeed, the torque profiles of the ankles look close to linear
as (d), the hips pitch’s profiles are hysteretic like (e), and
the hip roll’s compares well with (f). However, the knees
do not compare well as they show an important bias torque
even when crossing ∆q = 0 and it is because of the coupling
happening through the desired acceleration’s PHD controller
and the gravity compensation.
To demonstrate the conservation of the robustness to inertia



Fig. 8. Torque profiles in joint space

variations and to reduce the coupling effects in this multi-
dof system, we give an impulse command to KinWBC to
alter the pitch orientation of the hips while maintaining
the roll, yaw, and center of mass positions. While it is
challenging to decouple for our controller’s study to resist
external disturbances, we can still observe joint-level coupled
frequency invariant damping in figure Fig. 7 as (a) and (b)
show an equivalent overshoot, wherease (c) and (d) show
the same impulse after increasing the hip’s inertia and the
PHD demonstrates a smaller overshoot than PD in both the
hip pitch and the knee which is compensating for the COM
variation.

Fig. 9. DRACO

One can also notice that for a fixed stiffness and high d
value, PHD had a slower step response than PD. This could
be fixed by designing a separate variable kPHD

kPHD =
kPD

1−β
, β 6= 1, (26)

such that the PHD controllers proactive stiffness matches that
of the PD controller. While a bode plot will suggest the two
systems should be matched in average stiffness, the proactive
stiffness dominates for the step response.

V. CONCLUSION AND FUTURE WORK

We have shown that a time-domain approximation of a
complex stiffness is implementable and viable. Our PHD
controller can be scaled and reliably used to achieve human-
like mass-invariant damping ratios without estimating the
mass. As a standalone controller, PHD proposes a different
compromise than PD in the sense that its performance met-
rics is best defined in terms of resilience to inertia changes,
a future implementations of PHD controllers for humanoid
robots would benefit from a different WBC framework which
more clearly allows analysis of the task-space stiffness, and
which more reliably saturates the commanded task behavior
to prevent foot-tilting, jumping, and slipping modes which
made it difficult to measure the whole body damping ratio in
our DRACO simulations. This implementation will notably
allow for testing on the real robot and support future research
in manipulation, haptics feedback and collision response in
the context of human-robot interactions.
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