
Independent Component Analysis

Nicolas Brissonneau , UTEID:nb24488 , email:nicolasb@utexas.edu

I. INTRODUCTION

I am considering the problem of recovering n indepen-
dently produced soundtracks which have been artificially
mixed together randomly. In order to achieve this, I will
make use of Independent Component Analysis (ICA) by
maximizing the entropy of the system through a gradient
descent approach.

II. METHOD

Let’s consider the n by t matrix U containing the n
soundtrack samples of duration t, and a ”mixing” m by n
matrix A left-multiplying U to obtain the m by t matrix X :

X = AU (1)

The goal is now to recover an approximation Y of U by
finding the n by m matrix W such that:

Y =WX (2)

Using the gradient descent approach, we are looking for a
cost function which will ”reward” the signals recovery matrix
W when it is updated and becomes closer to ”unmixing” the
X matrix. The independent component analysis relies on the
assumption that the original soundtracks are not correlated
to each other, so if a correlation is found between two of the
mixed signals then it means that at least one soundtrack is
being correlated to itself.

A. Gradient descent
To design the cost function, we rely on the assumption of

the n source signals s being independent:

p(s) =
n

∏
i=1

ps(si) (3)

In our case we want the mixed signal pdf:

p(x) =
n

∏
i=1

ps(ω
T
i x) · |W | (4)

But because we don’t know it, we rely on the cdf approxi-
mation and its log likelihood:

g(s) =
1

1+ e−s (5)

l(W) =
m

∑
i=1

(
n

∑
j=1

logg′(ωT
j x(i))+ log |W |) (6)

Finally, differentiating this expression with respect to W
leads us to the cost function J:

J =

1−2g(ωT
1 x(i))

...
1−2g(ωT

n x(i))

x(i)
T
+(W T)−1 (7)

For computational convenience, we are right-multiplying J
by W TW and add the scalar product associated with the
learning rate α:

∆W = α(I +(1−2Z)Y T)W (8)

Where ∆W is an increment, we can now make W converge
by redefining it over each iteration as:

Wi+1 :=Wi +∆W (9)

B. Learning rate varying over iterations

We know that the learning rate has an enormous impact
on the convergence. If it is set too high, we will never get
close to the minimum we are looking for, if it is too low we
can get there, but over a considerable amount of iterations. I
am experimenting with learning parameter variations over
iterations, trying to converge faster and more accurately
than by using a constant value. I have explored different
approaches:

αsmart = cst (10)

αsmart =
αmax +αmini

i+1
(11)

αsmart = (αmax−αmin)
N− i

N
+αmin (12)

Where [αmin,αmax] represent the learning rate boundaries, i
the iteration number and N the total number of iterations
planned.

III. RESULTS

A. Main recovery result

An example of the results of this algorithm follows below
with Figure 1, Figure 2 and Figure 3. We observe in Figure
1 the initial soundtracks, in Figure 2 they are mixed up
using a randomly generated matrix A (in this specific case
scenario we have m = 3,n = 3), and in Figure 3 we can
observe a recovery attempt with a high learning rate of 0.01
and 5000 iterations. In this example, A mostly ended up
mixing the first original soundtrack with the third, and the
second original soundtrack, initially noisy, seems to have
been ”diluted” in the others.

B. Quantifying the performance

I found 3 metrics to estimate the performance of my
algorithm. For the first one, visual, I chose to superpose
the best correlated signals U and Y in a single plot after
normalizing them in order to compare similar magnitudes.
As shown in Figure 4, the original signal is shown in green
and the recovered signal in red. I set the two colors as

Fig. 1. Original signals

Fig. 2. Mixed signals

slightly transparent so that when the two graphs superpose
well, it becomes apparent as the colors fuse into brown.
At first glance the results look good for our demonstrated
performance, the superposition is well matched and
the correlation factors are high. However, seeing the red
noise in the first plot, we understand it does not look perfect.

This lead me to the second metrics, the audio itself.
As we can verify by listening to the resulting audio files,
what seems to be noise in the first recovered soundtrack is
actually the strong motor noise from soundtrack 2 which is
still partially mixed.

The third metrics which I found the most useful, is the
correlation factor r for a given original soundtrack sU against
a predicted recovered sY :

r =
∑(sU (i)− sU))(sY (i)− (sY))√
∑(sU (i)− sU)2 ∑(sY (i)− sY)2

(13)

As we can see in Figure 5, I checked the evolution of the

Fig. 3. Recovered signals

Fig. 4. Superposition of recovered and original signals

correlation factor over the iterations to better understand
what are the critical steps toward convergence. I turns out
that approximately 1250 iterations reached a limit in the
performance.

C. Extended testing

As of how to improve the results, I have increased the
number of iterations to 50000 and tried to reduce the
learning rate to 0.005. An example of the results is shown
in Figure 6, I have considerably improved the correlation
factors of each recovered signal and the noise we previously
described in the first recovered soundtrack is much more
attenuated. Further reducing the learning rate slows down

Fig. 5. Correlation estimation

Fig. 6. Better correlations

the progression considerably, and increasing the number of
iterations becomes very time-consuming.

IV. UPDATED RESULTS AND ALGORITHM

We slightly modify the algorithm with:

∆W = α(It +(1−2Z)Y T)W (14)

This leads to much faster convergence with correlations
reaching 0.9999 using a learning rate of 0.0000001. On
figures 7 to 10, we notice that he noise has almost completely
disappeared and cannot easily be noticed with any of the
metrics mentioned above.

Fig. 7. Original signals

Fig. 8. Mixed signals

V. CONCLUSION

I have tried improving the performance of the system by
generating an adaptive learning rate α , however I haven’t
been able to significantly improve the algorithm’s perfor-
mance using it. I believe it is much more efficient to try
different constant values as it consists in one parameter,
rather than the three parameters αmin, αmax and N mentioned
in Equation 12.

Moreover, the algorithm is much more sensitive to the
order of magnitude of the learning rate than its subtle
variations, too high can make the algorithm diverge severely
and too low may completely freeze the correlation’s improve-
ments.

However, I still believe it is possible to boost the per-
formance of this gradient descent by adapting the learning
rate. An example would be by providing impulses when
the correlation factor seems to be stuck, in order to avoid
potential local minimum.

Fig. 9. Superposition

Fig. 10. Correlation evolution

	Introduction
	Method
	Gradient descent
	Learning rate varying over iterations

	Results
	Main recovery result
	Quantifying the performance
	Extended testing

	Updated results and algorithm
	Conclusion

