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Abstract— Recent experiments have shown that human joints
can maintain a constant damping ratio across a wide range of
external loads. This behavior can be explained by the use of
a “complex stiffness” frequency-domain model approximating
the impedance of the human joint. However, for a robot to
replicate this naturally beneficial human behavior would require
a time-domain model of this nonlinear joint impedance. This
paper demonstrates that there exists a nonlinear time-domain
model (originally from the structural mechanics community) that
has a frequency-domain “describing function” that matches the
complex stiffness model observed in humans. We provide an
extension of this nonlinear time-domain model that removes the
need to implement hard-switching control input. In addition,
we demonstrate that this proportional-and-hysteretic-damping
controller has inertia-invariant overshoot and therefore offers
an advantage over the more common proportional-derivative
control approach. Implementing the proposed proportional-
and-hysteretic-damping control in a single-joint test-robot, we
demonstrate for the first time that the desired frequency domain
behavior can be reproduced in practice.

I. INTRODUCTION

While hysteretic damping was first studied by the structural
and civil engineering communities, it has emerged as a model
for biological joint dynamics. Structurally, hysteretic friction
interfaces have been used to remove energy from vibrations
in structures, with analysis performed in the frequency-domain
[1], [2]. Biologically, [3] has identified the hysteretic spring
model in the human elbow joint. These results were recently
strengthened by [4] as they allowed for better human-adapted
controller design for exoskeletons. Aside from humans, hys-
teretic spring behavior has also been identified in the joints
of cockroaches [5]. Beyond making robots more human-like,
an implementation of hysteretic damping for robot impedance
control offers a frequency-independent damping ratio, which
means that it could make robots more robust to overshoot due
to inertia variation.

However, implementing this frequency-domain behavior in
the time-domain is non-trivial, especially for researchers seek-
ing a linear time-domain realization. One approach is to use
a Hilbert transformation to directly convert the frequency-
domain representation into a non-causal (but linear) time-
domain model [6], [7]. However, since non-causal systems
cannot be realized, other approaches have aimed to realize
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the hysteretic damping through (1) causal relaxation [8]—
sacrificing the magnitude-plot behavior, (2) the addition of
an all-pass filter in the frequency domain [9]—sacrificing the
phase-plot behavior, and (3) a triangular-phase-plot approxi-
mation of the hysteresis loop [10]—sacrificing the linearity of
the realization. According to [6], Ref. [10] “failed to realize
that this is a nonlinear model,” but given that robots are
already nonlinear this is hardly a disqualifying drawback.
As emphasized by Ref. [11], Ref. [10]’s model has “hardly
received the attention it merits.”

As a nonlinear approach to achieving a robustness property,
an obvious comparison is adaptive control [12]. But while
adaptive control aims at identifying model uncertainties and
compensating for disturbances, the strength of a hysteretic
damping-based controller lies in the controller’s ability to pro-
vide strong robustness to inertia variation with no identification
requirements.

In this paper, we investigate how to transfer human-
like mass-invariant damping behavior to robots using a
smoothed nonlinear realization based on [10], which we call
proportional-and-hysteretic-damping (PHD) control. We show
that the describing function based on position-as-input [13] for
this controller exactly reproduces the desired complex-stiffness
frequency response, is amplitude-invariant, and is frequency-
invariant. Further novel analysis on behavior matching be-
tween PHD and PD controller designs is used to compare
the two controllers in terms of their step responses and
how these step responses change with inertia. We show that
PHD controller has the property of being perfectly insensitive
to inertia, in absolute domination of PD control’s inertia-
dependent overshoot. Since the model is non-linear, we also
investigate the describing function based on torque-as-input
to obtain a rough estimate of how consistently the desirable
frequency-domain behavior will be preserved under more
general conditions. And we demonstrate that the controller can
be realized in hardware, with a frequency response function
that closely matches both the simulations and the complex
stiffness model.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce complex stiffness and [10]’s
nonlinear time-domain model—which is the basis for our PHD
controller.

A. Complex Stiffness

A second-order linear mass-spring-damper can be described
as a frequency domain transfer function,

q(s)
τ(s)

=
1

m · s2 + b · s + k
(1)



with a linear damping coefficient b, a stiffness k, a mass m,
a displacement q, and an input torque τ. This system has a
natural frequency ω0 =

√
k/m and a damping ratio ζ =

b/(2
√

km). By replacing the linear damping term bs with an
imaginary component of the stiffness term hj, the complex
stiffness model [4] is expressed as

q(s)
τ(s)

=
1

m · s2 + h · j + k
(2)

which results in a mass-invariant damping behavior at the
resonant peaks and a hysteretic damping ratio ζ = h/(2k).
However, this complex stiffness model is non-causal and has
no exact time-domain representation.

B. A Nonlinear, Causal Approximation

To translate the human-inspired mass-invariant damping be-
havior into a time-domain system, we will need a controller for
mass-like systems that behaves mostly as a spring yet which
dissipates energy. Energy dissipation that does not scale with
frequency can be accomplished by hysteresis, but hysteresis as
typically implemented is also a highly amplitude-dependent,
Coulomb-friction-like behavior that adds less and less phase
lag as the input gets larger. Since complex stiffness is a linear
transfer function in the frequency domain, and therefore has
scale-invariant behavior, our nonlinear time-domain system
should behave the same for different magnitudes of input.

This set of requirements led us both to apply a displacement-
based scale factor to the Coulomb-friction hysteresis and to
revisit [10]’s one-page paper that did the same in order to
realize complex stiffness. The model is

f̂HS = kPHD · [1 + sign(q · q̇) · β] · q, (3)

where f̂HS is the resulting hysteretic spring-like force, β
defines the difference between the reactive and proactive
stiffness identified in Fig. 2, and kPHD is their mean value
shown in Fig. 1(a). This ideal model allows for instantaneous
stiffness switching based on the sign of the velocity, it is more
obvious when the same equation is reformulated as

f̂HS = kPHD · [q + |q| · sign(q̇) · β]. (4)

The switching between stiffness allows the controller to absorb
the potential energy difference between the two resulting
stiffnesses

k1 = kPHD · (1− β), and
k2 = kPHD · (1 + β).

(5)

And since the switching is a function of the sign of the
velocity, it results in a hysteretic damping regulated by β as
shown in the comparison between Fig. 1.a and Fig. 1.d.

As shown in Fig. 2, we can now identify three phases in
the dynamics of a PHD controller:
(1) proactive phase – pulls the system toward the equilibrium

with low stiffness k1 = kPHD · (1− β),
(2) transition – shows the instantaneous transition between

proactive and reactive stiffness behaviors due to a velocity-
sign switch,

(3) reactive phase – fights motion away from the equilibrium
with high stiffness k2 = kPHD · (1 + β).
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Fig. 1. Parameters Influence— plots of fHS v.s. q show the influence
of different ν, δ, and β values in (b), (c), and (d) compared to a reference
parameter setting in (a) over a full period. ν and δ are defined in Sec .IV-A.
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Fig. 2. PHD controller force period— (a) shows the 3 phases describing
the dynamics of the PHD controller in the force to position plane, while (b)
shows the associated time response of fHS.

One can notice that the transitions remain short and thus
the dynamics of the controller are dominated by the reactive
and proactive stiffness phases.

III. MODEL ANALYSIS

In this section, we provide a thorough analysis of the mass-
invariant behavior of (4).

A. Percentage Overshoot

Because our controller is composed of two stiffnesses, k1
and k2, we can predict the step response overshoot (Fig. 3).
This is because this response is switching between two second-
order linear behaviors when the velocity changes sign.

We can analytically calculate the amount of overshoot
using conservation of energy. The potential energy equality
1
2 · k1 · q1

2 = 1
2 · k2 · q2

2 holds between subsequent peaks in
amplitude, q1 and q2. And therefore,

|q2|
|q1|

=

√
k1

k2
. (6)

Substituting (5), the percentage overshoot φPHD of controlling
a mass m using the proposed PHD controller can be expressed
as

φPHD = 100 · |q2|
|q1|

= 100 ·
√

1− β

1 + β
. (7)



T2
4

T2
4

T2
4

T2
4

Proactive
Reactive

q 1
q 2

T1
4

T1
4

T1
4

T1
4

Fig. 3. Illustration of Step Response Behavior—This figure illustrates the
contribution of each stiffness due to a step input in the time-domain.
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Fig. 4. Conceptual Plot of Sinusoidal Response— a representation of each
stiffness contribution to a sinusoidal response in the time domain.

B. Damped Natural Frequency

Considering again the step response behavior in Fig. 3, the
response of a PHD controller is defined by the consecutive
switch between two stiffness k1 and k2. The switching happens
when q or q̇ crosses zero. We can split the full period into four
quadrants, such that each quadrant is the result of a single
linear spring behavior:

TPHD = 2 · T1

4
+ 2 · T2

4
, (8)

where T1 and T2 are the duration of the full periods of the
mass-spring dynamics solely dominated by k1 and k2. Let us
define ω1 and ω2 as the natural frequencies of the mass m
with virtual springs k1 and k2. By substituting T1 = 2π

ω1
, T2 =

2π
ω2

, and TPHD = 2π
ωd

PHD
into (8), we can express the damped

natural frequency ωd
PHD as

ωd
PHD =

2 ·ω1 ·ω2

ω1 + ω2
, (9)

Substituting ω1 =
√

k1/m and ω2 =
√

k2/m into (9), we
obtain

ωd
PHD =

2 ·
√

k1 · k2√
k1 ·m +

√
k2 ·m

. (10)

Substituting k1 and k2 from (5) we get

ωd
PHD =

√
kPHD

m
· 2 · (1− β2)

1 +
√

1− β2
. (11)

C. Time-Domain Comparison between PD and PHD

The percentage overshoot, φPD, of a PD controller and
its damped natural frequency, ωd

PD, for a linear impedance

controller described in (1) can be expressed as

φPD = 100 · e
− ζ·π√

1−ζ2 ,

ωd
PD =

√
kPD
m
· (1− ζ2).

(12)

If we let φPD = φPHD, (7) can be written as

β =
1− e

−2· ζ·π√
1−ζ2

1 + e
−2· ζ·π√

1−ζ2

. (13)

where ζ = bPD/(2 ·
√

kPD ·m). If we also let ωd
PD = ωd

PHD,
we can calculate the value of kPHD as

kPHD = kPD · (1− ζ2) · 1 +
√

1− β2

2 · (1− β2)
. (14)

Based on (13) and (14), kPHD and β can be expressed in terms
of m, kPD and bPD. For any PD control parameter setting,
there exists a pair of kPHD and β such that the time response of
the mass m with the PHD controller matches the time response
of m with the PD controller.

D. Frequency-Domain Response

When position is the input and force is the output, we
can analytically derive the describing function [13] of the
control in (4). In contrast to previous analytical solutions for
torque-forced oscillations [14], this will yield a describing
function that exactly reproduces the complex stiffness. Let
q(t) = a cos(ωt), such that it represents the phasor 1 + 0j.
Within a single 2π/ω period (as shown in Fig. 4), the output
f (t) will be

fHS(t) =


k2 · a · cos(ωt), for 0 ≤ t ≤ π

2ω ,
k1 · a · cos(ωt), for π

2ω ≤ t ≤ π
ω ,

k2 · a · cos(ωt), for π
ω ≤ t ≤ 3π

2ω ,
k1 · a · cos(ωt), for 3π

2ω ≤ t ≤ 2π
ω .

(15)

Since a appears linearly in all four cases, the describing
function will have no dependence on amplitude and we will
assume without loss of generality that a = 1.1 We can
calculate the describing function, f̂ (ω), through the Single
Period Phasor Transform of [15],

f̂HS(ω) =
ω

π

∫ 2π/ω

0
f (t) · e−jωtdt, (16)

or by re-parameterizing in terms of θ = ωt as in [13],

f̂HS(ω) =
1
π

∫ 2π

0
f (θ/ω) · e−jθdθ. (17)

Using this second form, we can break the integral into simple
trigonometric integrals,

f̂HS(ω) =
1
π

[
k2

∫ π
2

0
cos2(θ) + j · cos(θ) sin(θ)dθ

+ k1

∫ π

π
2

cos2(θ) + j · cos(θ) sin(θ)dθ

1We omit phase-shift due to an equally obvious invariance property.



+ k2

∫ 3π
2

π
cos2(θ) + j · cos(θ) sin(θ)dθ

+ k1

∫ 2π

3π
2

cos2(θ) + j · cos(θ) sin(θ)dθ

]
, (18)

which can be simplified by exploiting the indefinite
integrals

∫
cos2(θ)dθ = θ/2 + sin(θ) cos(θ)/2 and∫

cos(θ) sin(θ)dθ = − cos2(θ)/2,

f̂HS(ω) =
2k2

π

(
π

4
+

1
2
· j
)
+

2k1

π

(
π

4
− 1

2
· j
)

, (19)

or more simply

f̂HS(ω) = kPHD

(
1 +

2β

π
· j
)

. (20)

While describing function analysis is designed to handle very
general classes of nonlinear systems, this system is scale-,
phase-, and even frequency- invariant. More importantly, it
meets our goal by taking the form of a complex stiffness.

IV. METHODS

A. Tuning Parameters

The controller shown in (4) assumes perfect knowledge of
the sign of velocity and displacement, but these are corrupted
by noise in reality. To add extra energy dissipation for small
oscillations and smooth the torque transitions where velocity
changing sign, we add extra parameters ν and δ such that (4)
becomes

fHS = kPHD · q +
(kPHD · β · |q|+ ν) · q̇

|q̇|+ δ
, (21)

where

(1) δ softens the transition phases (Fig. 2) and acts as a dead
zone for velocities (Fig. 1.c), and

(2) ν provides a minimum energy dissipation when q gets
close to 0 (Fig. 1.b).

B. Simulation Strategy

To prove the effectiveness of the proposed PHD controller
in (21), we conduct simulations of a 1-DOF system defined
as

q̈ =
1
J
· (τg + τFF + τFB), (22)

where τg is the gravity torque, τFF is a feed-forward term for
gravity compensation, and τFB is a feedback term for tracking
a reference state [qdes, q̇des]. Using our PHD controller,

τFB = kPHD · ∆q +
(kPHD · β · |∆q|+ ν) · ∆q̇

|∆q̇|+ δ
, (23)

where ∆q = qdes − q and ∆q̇ = q̇des − q̇. On the other hand,
for a PD controller, τFB is implemented as

τFB = kPD · ∆q + b · ∆q̇. (24)

SEA

Joint

Load

Fig. 5. Test Apparatus—a modified Taurus Testing System with a P-170
Orion actuator (Apptronik Systems Inc., Austin, TX).

TABLE I
CONTROLLER PARAMETERS

Index kPHD β δ ν

T.1 38.64 0.57 0.003 0.001
T.2 81.81 0.88 0.003 0.001
T.3 323.08 0.98 0.003 0.001

F.1 52.79 0.76 0.314 0.100

C. Time-Domain Step Response Tests

We generate step responses using the proposed PHD and PD
controllers to compare their robustness to inertia variations.
For each pair of PHD and PD controllers, we test three inertia
values: 15, 50, and 300 kg ·m2, with 50 serving as the nominal
value. To provide a practical comparison between controllers,
we match the amount of overshoot and the damped natural
frequency for a nominal inertia using (13) and (14).

Tab. I shows the parameters for three PHD controllers (T.1-
3). T.1 is compared to a PD controller with kPD = 30 N ·m
and bPD = 15.5 N ·m · s. T.2 is compared to a PD controller
with kPD = 30 N ·m and bPD = 31.0 N ·m · s. And T.3
is compared to a PD controller with kPD = 30 N ·m and
bPD = 46.5 N ·m · s. The nominal damping ratios for these
three PD controllers are 0.2, 0.4, and 0.6.

We chose values for δ and ν such that they remain as
minimal as possible to preserve the desired property of the
controller while being high enough to mitigate chattering. Due
to the near-ideal simulation environment, we are able to easily
remove chattering by using very low values for δ and ν.

D. Frequency-Domain Response Tests

Our time domain model is motivated by the frequency
domain complex stiffness model. Here, we are interested in
comparing the complex stiffness model (2) with the frequency-
domain behavior achieved by (21).

In order to plot the ideal complex stiffness model, we need
only add an inertia term to (20):

τ(s)
q(s)

= m · s2 + kPHD ·
2β

π
· j + kPHD. (25)
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Fig. 6. Step-response comparison between PD and PHD controllers—The middle-column corresponds to the damped natural frequencies and overshoots
being matched between PD and PHD controllers, while the left and the right columns respectively correspond to a decrease and an increase of the system’s
inertia. These plots demonstrate the robustness from the PHD controller to inertia variations by showing a near constant overshoot regardless of the load.

One way for measuring the frequency-domain response of
the PHD controller is to perform frequency-domain system
identification using a sinusoidal input for qdes(t) and measur-
ing the torque output τ(t) while using the PHD controller F.1
defined in Tab. I. The reason why F.1 has different parameters
than T.1 through T.3 is because we found its values feasible
in the real hardware.

Because the hardware will not be following an ideal sinu-
soidal position input for identification, we also simulate a more
hardware-realistic case where the closed-loop system’s natural
dynamics are forced by a torque disturbance. For this type of
experiment, (22) becomes

q̈ =
1
J
· (τg + τFF + τFB + τ̃), (26)

where τ̃ is a chirp perturbation of torque input.
To confirm our simulations we perform experiments in the

hardware testbed shown in Fig. 5 [16]. δ is set to match the
noise level in the velocity signal—to avoid noise-driven output
chattering. ν is set to be well under the input amplitude, which
is sufficient for eliminating startup transients in finite time. To
de-noise the velocity signal q̇, we employ a second order low-
pass filter with ωc = 120 rad/s.

The parameters of the PHD controller (F.1) for the
frequency-domain test are shown in the last row of Tab. I.
For each frequency-domain test, the PHD controller moves
the arm of the testbed which has a moment of inertia of 0.187

kg ·m2. The input chirp signal has amplitude 4 N ·m and
sweeps frequencies within [4, 40] rad/s.

V. RESULTS

A. Comparison Between PD and PHD

The first set of results are shown in Fig. 6. The middle
column shows the step responses with the nominal inertia,
J = 50 kg ·m2, where the PD and PHD controllers are chosen
to have the same values for the damped natural frequency
and amount of overshoot. Therefore the response from the
two controllers is almost identical. The response using the
PD controller become more damped with J = 15 kg ·m2

and overshoot more with J = 300 kg ·m2 than using the
PHD controller. On the other hand, the step responses using
the PHD controller change very little with the changes of the
moment of inertia. Therefore, the PHD controller demonstrates
a superior robustness to inertia variations as anticipated.

B. Frequency-Domain Results

Fig. 7 shows the Bode plots of the complex stiffness model
described in (25) and the three frequency-domain system
identification results using (21): 1) a simulated system iden-
tification plot using qdes as the input, 2) a simulated system
identification plot using τ̃ as the input, and 3) a hardware
experiment using τ̃ as the input. As expected, the describing
function measured with position as an input and the complex
stiffness model are similar to each other. In addition the
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system identification results using (21): 1) a simulated system identification
plot using qdes as the input, 2) a simulated system identification plot using τ̃
as the input, and 3) a hardware experiment using τ̃ as the input.

describing functions measured with force as input are also
similar to each other. Between 8 and 20 rad/s the experiment
seems to adhere closer to the position as input than the torque
as input describing functions. This is likely due to the effect of
the low-level actuator controller [16] which limits the torque
control bandwith. Naturally, the two types of inputs converge
at high frequencies because the mass of the system dominates
and causes both position and torque to approach sinusoidal
behavior.

Between the two simulations, the magnitude and phase
plots have distinct features including a smaller low frequency
phase asymptote and a smaller magnitude before the resonant
frequency for the torque-as-input models. This low frequency
behavior is explained mainly by the torque-as-input behavior
spending a longer time in the proactive than in the reactive
phase. In addition, as we increase δ, we further reduce the
phase at lower frequencies.

VI. DISCUSSION

Mass-invariant overshoot promises to be a practical ro-
bustness property that achievable by mechanical and robotic
systems. In this paper we have demonstrated that 1) PHD
control offers superior inertia robustness compared to classic
PD controllers, 2) PHD control has comparable behavior to
the complex stiffness model in the frequency domain, and 3) a
hardware realization of PHD control can successfully achieve
this complex stiffness behavior. This hardware implementa-
tion relied on implementing a time-domain approximation of
hysteretic damping with extra parameters ν and δ to remove
chattering and provide extra energy dissipation.

Robots that manipulate partially known objects, or more
generally, robots that need strong guarantees for overshoot
regardless of the loads they carry, stand to benefit from this

approach. The mass-invariance property avoids complicated
tuning or system identification.

Because our PHD controller switches between stiffnesses, it
is slightly more sensitive to delays than a classic PD controller;
and this is a key factor in tuning the controller. While one
might be tempted to tune for low overshoot, tuning a PHD
controller means compromising between speed and energy
dissipation. It can be shown, that the energy absorbed by the
controller is a function of the ratio between k1 and k2 which is
ultimately defined by β. So one might think that it is desired
to have a very high k2 value. But if there is a delay in the
transition from low stiffness to high stiffness, the system can
gain energy at the transition. This puts a practical upper limit
on how large k2 can become before the time delay will add
more energy than the system can remove.
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