
Backpropagation

Nicolas Brissonneau , UTEID:nb24488 , email:nicolasb@utexas.edu

Fig. 1. Wrong hyper-parameters bounds

I. INTRODUCTION

I am considering the problem of identifying a ”testing
sample” Stest composed of ntest handwritten digits similar
to Fig.1, each originally encoded as a 28x28 gray-scaled
picture (where brightness corresponds to the pixel value)
which will be named Vim and of dimensions 784x1, we will
denote Vim(j) the j-indexed image from the samples list.

II. METHOD

We are setting up a neural network which is made of 3
layers:
• Input layer: Receiving a transformed Vim (784x1)
• Hidden layer: Intermediate layer (nhiddenx1)
• Output layer: Returning the classified digit (10x1)

By naming the neurons returned values from the first layer to
the last x0, x1 and x2, we can express our objective function:

E =
1
2
‖x2−d‖2 (1)

Where d is the desired output. We need to compute x2 and x1,
we do so using the following forward propagation equation:

xk+1 = g(Wkxk) (2)

With Wk the kth matrix of weights between the kth and kth +1
layers of neurons and g being the sigmoid function:

g(u) =
1

1+ e−u (3)

Now we want to backpropagate the error through the
network to update the weights according to the objective

function. We know the hamiltonian matrix H from the Euler-
Lagrange formulation:

H =
1
2
‖xk−d‖2 +Σ

k=K−1
k=0 (λ T

k+1[−xk+1 +g(Wkxk)] (4)

K being associated with the last layer, now differentiating H
with respect to xk:

Hxk =−λk +[W T
k ∆k+1g′(Wkxk)] (5)

Where ∆ is the square matrix of diagonal λi and g′ is the
differentiated sigmoid:

g′(u) = g(u)(1−g(u)) (6)

Now we can compute all λk with:

λK = xK−d for k=K

λk =−W T
k ∆k+1g′(Wkxk) for k=0,..,K-1

(7)

And finally compute the weight adjustment:

∂H
∂wki, j

= λk+1ixk jg
′(wkixk) (8)

III. RESULTS

First of all, we verify our algorithm is working
correctly by making sure the error is reduced properly by
backpropagation over a number of iterations. To do so, we
set up a training scenario in which we measure the norm of
the error described in the objective function: error = x2−d.
For the following tests we are using N=100 neurons in
the hidden layer, 5000 sample images per epoch and a
learning rate of 0.1. In Fig. 2 we are testing the classifier’s
performance over the data samples it has been trained on.
One can see that the mean of the norms of the errors
decreases over each epoch.

In the following test shown in Fig. 3 we used a similar
setting as for Fig. 2 but this time we are interested into
testing the classifier’s performance on a data set it has not
been trained on before. Out of fairness with the testing
demonstrated on the training set, we test this test the neural
network on 5000 sample images from the testing set. We
notice a drop, less significant than when performing on the
training data.

Now one big question which was asked during this study
is which number of neurons to choose for the hidden layer.
To answer this question I ran two series of tests, the first
one focusing on a number of neurons inferior to 100 and the
second one exploring higher numbers of neurons. In Fig. 4
we notice a strong improvement of performance from 1 to

Fig. 2. Evolution of the error norm over epochs while classifying the
training data

Fig. 3. Evolution of the error norm over epochs while classifying the
testing data

30 neurons, and a slow but steady increase until 100. In
Fig. 5 however, we notice a slight decrease that past 100
neurons followed by a null slope which infers little chance
to notice a change in performance beyond these values. We
will now consider the changes when adding another hidden
layer. In this case scenario we have two hidden layers, each
of size 200x1. What we can observe in Fig. 6 and Fig. 7 is
a much slower convergence, it seems that adding a layer, for
a similar configuration and neural network parameters, will
slow the learning. Though intuitively speaking, more layers
should allow us to grasp more complex patterns and increase
the accuracy on the long run, it proves to be a much slower
process.

IV. CONCLUSION

I learned that neural networks and backpropagation
require meticulous tuning. I noticed that including a bias
term helped a lot with the convergence of my neural nets,
and I learned it was possible to derive by hand a different

Fig. 4. Accuracy for low number of neurons

Fig. 5. Accuracy for high number of neurons

version of the algorithm shown in class. We have also tried
to use semi-linear activations but it did not converge.

Future works include randomly deactivation neurons to
stimulate a better learning, trying different activation func-
tions and testing different hidden layers configurations.

Fig. 6. Evolution of the error norm over epochs while classifying the
training data for 2 hidden layers

Fig. 7. Evolution of the error norm over epochs while classifying the
testing data for 2 hidden layers

	Introduction
	Method
	Results
	Conclusion

