
Designing a classifier for handwritten digits recognition

Nicolas Brissonneau , UTEID:nb24488 , email:nicolasb@utexas.edu

Fig. 1. handwritten digit

I. INTRODUCTION

I am considering the problem of identifying a ”testing
sample” Stest composed of ntest handwritten digits similar
to Fig.1, each originally encoded as a 28x28 gray-scaled
picture (where brightness corresponds to the pixel value)
which will be named Vim and of dimensions 781x1, we will
denote Vim(j) the j-indexed image from the samples list.

II. METHOD

In order to differentiate digit Vim(j) from digit Vim(k)
(j6=k) I am using the Principal Component Analysis (PCA)
approach which relies on the derivation of the direction
principal variations in the space of digits from a training
set Strain. We will use these directions to allocate coor-
dinates to the handwritten digit brightness patterns which
will ultimately allow us to discriminate different samples
based on a quantification of the similarities between them.
Using a known set of labels from the training samples, we
aim to design an appropriate metrics for quantifying the
similarities between Vim(j) and Vim(k), as well as a suitable
choice of eigenvectors to better discriminate between digits.
The combination of these two goals would more efficiently
predict the testing set’s digits class (from 0 to 9).

A. Computing the direction principal variations

We first need to get rid of the bias among the digits from
the training set Strain and thus introduce Wim(j):

Vaverage =
∑

M
j=1 Vim(j)

M
(1)

Wim(j) =Vim(j)−Vaverage (2)

We can now consider the concatenated matrix A of Wim(j)
for j ∈ [1,ntrain] to get the sample covariance matrix Σ which
leads to the digits eigenspace:

Σ = AAT (3)

Fig. 2. Projection

However, we notice that depending on the resolution of
the data we can face a high computing cost, so we also
consider another approach to find the digits eigenspace, we
will instead use Σ’ to identify the set of eigenvectors v of
the smaller dimension system:

Σ
′ = AT A (4)

AT Av = µv (5)

And by conveniently pre-multiplying by A we have the long
set of eigenvectors U of Σ:

AAT Av = µAv⇒ ΣU = µU (6)

We can now use U to project the image Wim(j) into the
eigenspace coordinates to compare it with another image
Wim(k).

B. k-nearest neighbours

In order to quantify the similarities between different
images projections into the eigenspace, we can look at their
euclidean distance in that space. The k-nearest neighbours
algorithm suggests that if an unknown digit’s projected
image is close enough to numerous other images projections
belonging to a common class (meaning that the other images’
label are similar), the unknown digit might share the same
class. This methods thus looks at the k closest projections
and associates the unknown label to the most represented
one among the k closest projections.

One can have a better intuition regarding this algorithm by
considering the distance between the projections of images
on only two eigenvectors as in Fig.2.

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Fig. 3. Eigenvectors

III. RESULTS

For each of my experiments and data shown in this section,
I have selected a random set of images from Strain, and
when accuracy is shown in a graph it means that I have also
selected a random set of images from Stest to test the classifier
upon. In order to make sure I was not lucky/unlucky in my
data, for each data point shown in a graph corresponding
to a very specific choice of parameters, I have run several
iteration with random selection of images each time and I
have kept the mean performance.

A. Eigenspace representation

We can see the eigenvectors representation in Fig.3, these
are normalized and can be understood as the axis of a
coordinate system.

B. Image reconstruction

Fig.8 shows how the images are represented through their
reconstruction using 3 different eigenvector sizes. One can
notice that the number m of eigenvectors has an impact on
the reconstruction.

C. Influence of the number of eigenvectors

Fig.4 shows how the accuracy of the digits labels clas-
sification increases as m increases, until it seems to remain
constant. We learn that the minimum value of m is important,
but it does not require to increase much as it does not
significantly impact the accuracy afterward.

D. Influence of the number of images for training

Fig.5 shows how the accuracy of the digits labels clas-
sification varies over the number of training images. The
evolution is similar to subsection C’s, even though we
still observe a noticeable growth as the training set’s size
increases.

E. Influence of the number of neighbours to consider

Fig.6 shows how the accuracy of the digits labels classi-
fication varies over the number of neighbours counted. We
will discuss it more in the conclusion.

0 50 100 150 200 250 300
Eigenvectors size

0

10

20

30

40

50

60

70

80

90

%
 A

cc
u
ra

cy

Evolution of accuracy over eingenvectors size for k=5 and n_train=600

Fig. 4. Influence of m

0 500 1000 1500 2000 2500 3000
Training size

0

20

40

60

80

100

%
 A

cc
u
ra

cy

Evolution of accuracy over samples size for m=36 and k=5

Fig. 5. Influence of sample size

IV. CONCLUSION

The data indicate that the choice of k and m plays a big
part in improving the accuracy of the classifier and this is
rather intuitive, however I was surprised to see how easily
the k parameter could decrease the accuracy when being
overestimated. This parameter’s sensitivity can partially be
solved by counting the closest neighbours while weighting
them inversely proportionally to their distance with the
projection of the image to classify. I chose to weight them as

1
D4 where D is the euclidean distance mentioned in section
2. The exponent 4 seems to decrease the loss of accuracy
over k as seen in Fig.7. compared to Fig.6.

I believe a next step in improving the efficiency of the
classifier would be to better choose the eigenvectors in the
first place. As we proceeded, we selected the m highest
eigenvalues and kept the associated eigenvectors, while we
could have selected the eigenvectors who had the biggest
impact in discriminating the digits from each others.

0 20 40 60 80 100 120 140 160
Training size

0

10

20

30

40

50

60

70

80

90

%
 A

cc
u
ra

cy

Evolution of accuracy over k neighbours for m=36 and n_train=600

Fig. 6. Influence of k

0 20 40 60 80 100 120 140 160
k value

0

20

40

60

80

100

%
 A

cc
u
ra

cy

Evolution of accuracy over k neighbours for m=36 and n_train=600

Fig. 7. Influence of k when the distance is taken into account
Fig. 8. Digit reconstructed

	Introduction
	Method
	Computing the direction principal variations
	k-nearest neighbours

	Results
	Eigenspace representation
	Image reconstruction
	Influence of the number of eigenvectors
	Influence of the number of images for training
	Influence of the number of neighbours to consider

	Conclusion

